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We consider the reconstruction of complex obstacles from few far-field acoustic measure-
ments. The complex obstacle is characterized by its shape and an impedance function dis-
tributed along its boundary through Robin type boundary conditions. This is done by
minimizing an objective functional, which is the L2 distance between the given far-field
information g1 and the far-field of the scattered wave u1 corresponding to the computed
shape and impedance function. We design an algorithm to update the shape and the
impedance function alternatively along the descent direction of the objective functional.
The derivative with respect to the shape or the impedance function involves solving the
original Helmholtz problem and the corresponding adjoint problem, where boundary inte-
gral methods are used. Further we implement level set methods to update the shape of the
obstacle. To combine level set methods and boundary integral methods we perform a
parametrization step for a newly updated level set function. In addition since the computed
shape derivative is defined only on the boundary of the obstacle, we extend the shape
derivative to the whole domain by a linear transport equation. Finally, we demonstrate
by numerical experiments that our algorithm reconstruct both shapes and impedance
functions quite accurately for non-convex shape obstacles and constant or non-constant
impedance functions. The algorithm is also shown to be robust with respect to the initial
guess of the shape, the initial guess of the impedance function and even large percentage
of noise.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Let D be a bounded domain of R2 such that R2 n D is connected. We assume that its boundary @D is of class C2. The prop-
agation of time-harmonic acoustic fields in homogeneous cylinder media can be modelled by the Helmholtz equation
Duþ j2u ¼ 0 in R2 n D; ð1Þ
where j > 0 is the wave number. At the obstacle boundary, @D, we assume that the total field u satisfies the Robin type
boundary condition. That is,
@u
@n
þ ijru ¼ 0 on @D ð2Þ
. All rights reserved.
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with some impedance function r where n is the outward unit normal of @D. We assume that r is a real valued C1-continuous
function and has a uniform lower bound r� > 0 on @D. The boundary @D is referred to be coated.

For a given incident plane wave uiðx; dÞ ¼ eijd�x with incident direction d 2 S1, where S1 is the unit circle in R2, we look for
a solution uðx; dÞ :¼ uiðx; dÞ þ usðx; dÞ of (1), (2), where the scattered field us satisfies the Sommerfeld radiation condition
lim
r!1

ffiffiffi
r
p @us

@r
� ijus

� �
¼ 0 ð3Þ
with r ¼ jxj and the limit is uniform for all directions x̂ :¼ x=jxj 2 S1. It is well known (cf. [7]) that the scattered wave has the
asymptotic behavior:
usðx;dÞ ¼ eijrffiffiffi
r
p u1ðx̂;dÞ þ Oðr�3=2Þ; r !1; ð4Þ
where the function u1ðx̂; dÞ is called the far-field of the scattered wave usðx; dÞ corresponding to the incident direction d.
The problem we are considering is formulated as the following inverse scattering problem.
Complex obstacles reconstruction problem. Given u1ðx̂; dÞ for every x̂ 2 S1 and for K incident directions

d ¼ d1; d2; . . . ; dK ,we want to reconstruct the complex obstacle ð@D;r).
In the case where d varies in a connected open subset of S1, we have uniqueness of the inverse problem, see [19]. This

uniqueness issue is largely open if we restrict ourselves to a finite number of incident directions. For some particular situ-
ations partial results are known. Indeed, in the case where the Robin boundary condition is replaced by the Dirichlet one
(which is ‘‘similar” to take r large in the Robin boundary condition), local uniqueness results for detecting the shapes are
obtained, see [8,30,12] as well as local stability results, see [16,17,28]. These results are valid for small obstacles, see
[8,16,17], and for close obstacles, see [30,12,28]. In addition, if we know an upper bound of the size of obstacles, then we
can estimate the number of incident directions needed to insure uniqueness, see [8,12]. Moreover, if we know in advance
that the obstacle D is polygonal, then two incident directions are enough for detecting ð@D;rÞ, see [21] and the references
there, while for the Dirchlet case one incident direction is enough, see [1]. For this particular form of the obstacle, stability
estimates are also provided in [25]. For general forms of obstacles and for Robin boundary conditions, the local uniqueness
question is still an open issue. In case we know a-priori the obstacle, then a stability result for detecting the surface imped-
ance is given in [29].

The object of this paper is to design a level set type [24] algorithm combined with boundary integral methods to recon-
struct ð@D;rÞ from few incident directions. Reconstructing shapes by level set methods, introduced by Santosa for inverse
problems in [27], has a long history in both shape optimization and inverse scattering fields, see review papers [4,9] for more
details. The level set method introduced by Osher and Sethian in [24] tracks the motion of an interface by embedding the
interface as the zero level set of a signed distance function. The motion of the interface is matched with the evolution of
the zero level set. Therefore, by working with a one dimension higher level set function it is not necessary to track the prop-
agation of the interface, topological changes can occur in a natural manner, and the technique extends easily to three dimen-
sions. However, in our framework of combining level set methods with boundary integral methods we need an explicit
boundary representation of the zero level set from the given level set function. Therefore, we do not particularly benefit from
level set methods. However, a main justification for the use of the level set method is the possibility of generalization. Note
that a parametrization approach has been used in [32], where a Newton method was applied using the derivative with re-
spect to the parametrization basis function. This might be more efficient, but the obvious drawback is the inherent need of a
parametrization of the boundary, which requires some sort of a priori guess (such as the number of connected components)
of the solution. On the contrary, in our approach the only need for a parametrization of the boundary comes from the com-
putations of the forward problem, more precisely from the use of the boundary integral method for computing the far-field.
A parametrization procedure for the inverse problem is not needed when the far-field is computed by finite element meth-
ods, for instance. Another possible application of the level set method are near-field problems (e.g. impedance tomography),
where finite elements are a usual tool for approximation the forward problem. In these cases we can fully benefit from the
advantages of a parametrization free algorithm for the inverse problems, in particularly by allowing topological changes.
Therefore, the level set procedure can be applied to multi scattering problems as well. This will be our future work and is
illustrated in more detail in Section 4.

Moreover, the novelty of our work lies in that we can reconstruct both the shape D and the impedance function rðxÞ by
using the gradient descent method to minimize a least squares functional related with the given far-field data. To do so we
need first to compute derivatives of the minimizing functional with respect to the shape and the impedance function, and
then update the level set function via the shape derivative and update the impedance function via the impedance derivative
alternatively. This is a non-convex problem and there is no uniqueness guaranteed. Nevertheless our numerical results sur-
prisingly show very good reconstructions of both shapes and impedance functions, for non-convex shapes and non-constant
impedance functions.

To find an explicit boundary curve of the zero level set from the given level set function, we have to assume that the
obstacle is star-shape like and a point inside the obstacle is known. This is a rather weak assumption and it can be given
naturally in some real cases that the location of the obstacle is known. It can also be obtained by other direct and non-iter-
ative imaging methods, such as [15] which uses full far-field data and multiple frequencies to obtain accurate shape recon-
structions, or [10] which uses topological derivatives to obtain rough shape reconstructions from full or partial far-field data,
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or [23,20] which use full far-field data to reconstruct an approximation of the complex obstacle ð@D;rÞ. Particularly, we can
further extend our work by using the reconstructions of the complex obstacle ð@D;rÞ from [23,20] as the initial guess for the
shape and the impedance function.

The rest of the paper is organized as follows. In Section 2 we propose to minimize a least squares functional and compute
partial derivatives of this minimizing functional with respect to the shape and the impedance functional. In Section 3 we
focus on how to solve the Helmholtz equation with the Robin type boundary condition and the Sommerfeld radiation con-
dition by the boundary integral method, recognized as an efficient method in the classical scattering literature. We then de-
scribe in Section 4 the implementation of level set methods to reconstruct shape including some special treatments: a
parametrization form of the zero level set from the given level set function and an extension of the computed shape deriv-
ative to the whole domain. Next section we deal with how to update the impedance function. We finally introduce our algo-
rithm of reconstructing both the shape and the impedance function in Section 6 and we display numerical results from our
algorithm in Section 7.

2. The minimization problem and the partial derivatives

As we mentioned, we are given the far-field patterns, g1j ðx̂Þ, j ¼ 1; . . . ;K , of the scattered waves gs
j ðxÞ, corresponding to the

exact shape and the exact impedance function at an incident direction dj, we want to reconstruct the shape of the obstacle
and the surface impedance on the surface of the obstacle. To do so, we minimize the following least squares functional:
Fð@D;rÞ ¼ 1
2

XK

j¼1

Z
S1
ju1j ð@D;rÞðx̂Þ � g1j ðx̂Þj

2dsðx̂Þ; ð5Þ
where u1j ð@D;rÞðx̂Þ is the computed far-field pattern obtained from a shape D and an impedance function rðxÞ at the incident
direction dj. To calculate the derivative of this functional with respect to the shape or the impedance function, we first find
the derivative of the far-field pattern u1j ð@D;rÞðx̂Þ with respect to the scattered wave us

j ð@D;rÞðxÞ and then calculate the
derivative of us

j ð@D;rÞðxÞ with respect to the shape or the impedance function based on a variational formulation of the
Helmholtz problem given in the next subsection.

To simplify the notation for the later computation, throughout the whole section, we omit the dependence on dj and re-
write (5) as
Fð@D;rÞ ¼ 1
2

Z
S1
ju1ð@D;rÞðx̂Þ � gðx̂Þj2dsðx̂Þ: ð6Þ
In our numerical experiments, we computed (5) with four uniformly distributed incident waves. We can certainly use more
than four incident waves and also for directions restricted to a limited angle (cf. [10]) (for example, dj 2 ½�p=4;p=4�), how-
ever that is not the purpose of our paper. We are also aware of the approach of using a single incident wave but multiple
frequencies to reconstruct the shape of the boundary (cf. [10,11]) but that is also out of the scope of our work.

2.1. The near-field–far-field map and the partial derivatives

We define a map from the scattered wave us to the far-field pattern u1 as
A : L2ð@DÞ ! L2ðS1Þ : usð@D;rÞðxÞj@D :¼ f ðxÞ ! u1ð@D;rÞðx̂Þ;
which is the Dirichlet–Laplace operator for the scattering problem. We know the explicit representation of A from [7] as
ðAf Þðx̂Þ ¼ ðK1 � igS1ÞðI þ K � igSÞ�1f ; ð7Þ
where g > 0 is a constant, I is the identity operator, S and K are the single layer operator and the double layer operator
respectively, and S1 and K1 are correspondingly the far-field counterpart of the single or double layer operator. For more
information on these operators, we refer to Section 3 in [7].

Now, by denoting us
@D and us

r the partial derivatives of usð@D;rÞ with respect to @D and r, respectively, we obtain the
derivatives of the minimizing functional Fð@D;rÞ from (6) with respect to @D and r as follows:
F@Dð@D;rÞ ¼ Re
R

S1 ðAus
@DÞðx̂Þu1ð@D;rÞðx̂Þ � gðx̂Þdsðx̂Þ

h i
¼ Re

R
@D us

@DðxÞðA
�ðu1ð@D;rÞ � gÞÞðxÞdsðxÞ

h i

and
Frð@D;rÞ ¼ Re
R

S1 ðAus
rÞðx̂Þu1ð@D;rÞðx̂Þ � gðx̂Þdsðx̂Þ

h i
¼ Re

R
@D us

rðxÞ A�ðu1ð@D;rÞ � gÞð ÞðxÞdsðxÞ
h i

;

where A� : L2ðS1Þ ! L2ð@DÞ is the adjoint operator of A. We define
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cðxÞ :¼ ðA�ðu1ð@D;rÞ � gÞÞðxÞ;
then the above equations become
F@Dð@D;rÞ ¼ Re
Z
@D

us
@DðxÞcðxÞdsðxÞ

� �
ð8Þ
and
Frð@D;rÞ ¼ Re
Z
@D

us
rðxÞcðxÞdsðxÞ

� �
: ð9Þ
Therefore, to compute derivatives of F with respect to the shape and the impedance function, we need to compute cðxÞ, us
@DðxÞ

and us
rðxÞ. However, as presented later, we do not compute the derivatives us

@DðxÞ and us
rðxÞ directly. Instead we use a var-

iational formulation and its adjoint problem to transform (8) and (9) into some boundary integrals, which are only related
with the solutions of the original Helmholtz problem and its adjoint problem.

Remark 2.1. Here we use the notation of the partial derivatives us
@DðxÞ and us

rðxÞ before we validate the existence of the both
derivatives, which will be given in Section 2.3.

Remark 2.2. In the case where j2 is not an eigenvalue for the Dirichlet-Laplace operator on D we can let g ¼ 0 from (7) and
then we obtain Af as
Af ¼ K1ðI þ KÞ�1f ;
see [6]. This is a reasonable assumption since the set of eigenvalues of Dirichlet–Laplacian operator on D is discrete.
2.2. A variational form for the scattering problem

Let XR be a large ball, with radius R, containing strictly D. We follow the ideas in [11]. From [11,18], we know that the
solution u :¼ ui þ us of (1)–(3) satisfies
Duþ j2u ¼ 0 in XR n D;
@u
@nþ ijru ¼ 0 on @D;
@us
@n ¼ MðusÞ on @XR;

8><
>: ð10Þ
where
MðuÞ :¼
X1

l¼�1
zjljðj;RÞwlðxÞ

Z
@XR

wlðyÞuðyÞdsðyÞ
with wlðxÞ :¼
ffiffiffiffiffiffi

1
2pR

q
eilh, for x ¼ RðcosðhÞ; sinðhÞÞ 2 @XR and zjljðj;RÞ :¼

jHð1Þ0jlj ðjRÞ

Hð1Þjlj ðjRÞ
, Hð1Þjlj is the Hankel function of first kind of order l

and Hð1Þ0jlj is its derivative.
Conversely, if uXR :¼ ui þ us

XR
satisfies (10), then we can extend us

XR
(and then uXR ) to R2 n D by solving the Dirichlet exte-

rior problem
Due þ j2ue ¼ 0 in R2 nXR;

ue ¼ us
XR

on @XR;

lim
r!1

ffiffiffi
r
p

@ue

@r � ijue
� �

¼ 0:

8>><
>>:
Thus the function u defined by u :¼ uXR on XR n D and u :¼ ui þ ue on R2 nXR satisfies (1)–(3). This shows that the problem
(1)–(3) and the problem (10) are equivalent.

The variational form of the problem (10) is given by
Z
XRnD
ð�ru � rv þ j2u�vÞdxþ ij

Z
@D

ru�v dsðxÞ þ
Z
@XR

MðuÞ�v dsðxÞ ¼
Z
@XR

ðMðuiÞ � @ui

@n
Þ�v dsðxÞ ð11Þ
for u;v both in H1ðX n DÞ.

2.3. The partial derivative of Fð@D;rÞ w.r.t. the shape

To calculate the derivative of the minimizing functional Fð@D;rÞwith respect to the shape @D for a fixed impedance func-
tion rðxÞ, we need a formal definition of shape derivatives. In the framework of Murat–Simon [22,31], it is defined as the
following. Let D � X � RN be a reference domain. Consider the perturbation under the map h 2W1;1ðRN;RNÞ, s.t. khkW1;1 < 1:
Dh ¼ ðI þ hÞD;



L. He et al. / Journal of Computational Physics 228 (2009) 717–730 721
where I is the identity map. The set Dh is defined as
Dh ¼ fxþ hðxÞ j x 2 Dg:
The shape derivative of an objective shape functional, F : RN ! R, at D is defined as the Frechet differential of h!FðDhÞ at
0 where h can be viewed as a vector field advecting the reference domain X. The shape derivative dSFðDÞðhÞ depends only on
h � n on the boundary @D because the shape of D does not change at all if h is lying on the tangential direction of the domain D.

For an objective functional that is the integral on the volume of D or along the boundary of D, the following formulas can
be easily obtained. If D is a smooth bounded open set, f ðxÞ 2W1;1ðRNÞ, and
FðDÞ ¼
Z

D
f ðxÞdx;
the shape derivative is
dSFðDÞðhÞ ¼
Z

D
r � ðhðxÞf ðxÞÞ ¼

Z
@D

hðxÞ � nðxÞf ðxÞdsðxÞ: ð12Þ
If D is a smooth bounded open set, f ðxÞ 2W2;1ðRNÞ, and
FðDÞ ¼
Z
@D

f ðxÞdx;
the shape derivative is
dSFðDÞðhÞ ¼
Z
@D

hðxÞ � nðxÞ @f
@n
þ Hf

� �
dsðxÞ; ð13Þ
where H is the mean curvature of @D defined by H ¼ r � n. These two formulas indicate that the shape derivative depends
only on the boundary when the objective functional is a volume integral and the curvature plays a role when the objective
functional is a surface integral.

Now, we are ready to calculate the derivative of us with respect to @D under a perturbation map VðxÞ 2W1;1ðR2;R2Þ. With
Dt :¼ ðI þ tVðxÞÞD denoting the perturbed shape, ut denoting the solution of (11) when replacing D by Dt , and
us
@D ¼ u@D ¼ limt!0

1
t ðut � uÞ denoting the partial derivative of us with respect to the shape, we derive below to obtain the

derivative F@Dð@D;rÞ. Based on the shape derivative formulas above (12) and (13), we subtract the two variational formula-
tions for ut and u, divide it by t and take the zero limit of t, then we end up to have
�
R

XRnD
ru@Drv dxþ

R
@DðV :nÞrurv dsðxÞ

	 

þ j2

R
XRnD

u@D �v dx�
R
@DðV :nÞu�v dsðxÞ

	 

þij

R
@D ru@D �v dsðxÞ þ

R
@DðV :nÞð

@ðru�vÞ
@n þr � nðru�vÞÞdsðxÞ

	 

þ
R
@XR

Mðu@DÞ�v dsðxÞ ¼ 0:
We rearrange the above equation and get
�
R

XRnD
ru@Drv dxþ j2

R
XRnD

u@D �v dxþ ij
R
@D ru@D �v dsðxÞ þ

R
@XR

Mðu@DÞ�v dsðxÞ

þ
R
@DðV :nÞ rurv � j2u�v þ ij @ðru�vÞ

@n þ ijðr � nÞðru�vÞ
n o

dsðxÞ ¼ 0:
ð14Þ
By the solvability of the above equation (14), we know that the partial derivative of us with respect to @D under a perturba-
tion V exists. Similar can be said about the existence of us

r.
Now, we denote w as the solution of the adjoint problem
�
Z

XRnD
rwrvdxþ j2

Z
XRnD

w�v dx� ij
Z
@D

rw�v dsðxÞ þ
Z
@XR

wMðvÞdsðxÞ ¼
Z
@D

cðxÞ�v dsðxÞ;
8v 2 H1ðXR n DÞ. By taking the conjugate of the above equation, we have:
�
Z

XRnD
rwrv dxþ j2

Z
XRnD

�wv dxþ ij
Z
@D

r �wv dsðxÞ þ
Z
@XR

�wMðvÞdsðxÞ ¼
Z
@D

cðxÞv dsðxÞ: ð15Þ
Since M�ðwÞ ¼ Mð�wÞ, we have
Z
@XR

MðvÞ �wdsðxÞ ¼
Z
@XR

vM�ðwÞdsðxÞ ¼
Z
@XR

vMð �wÞdsðxÞ:
We plug it in (15) and replace v by �v to get
�
Z

XRnD
rwrv dxþ j2

Z
XRnD

�w�v dxþ ij
Z
@D

r �w�v dsðxÞ þ
Z
@XR

Mð �wÞ�v dsðxÞ ¼
Z
@D

cðxÞ�v dsðxÞ:
This is equivalent to say that �w is the restriction to XR n D of the solution of the scattering problem:
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D~wþ j2 ~w ¼ 0 in R2 n D;
@ ~w
@n þ ijr ~w ¼ cðxÞ on @D;

lim
r!1

ffiffiffi
r
p
ð@ ~w
@r � ij~wÞ ¼ 0:

8>><
>>: ð16Þ
Replacing v by u@D in (15), we get
F@Dð@D;rÞ ¼ Re
Z
@D

cðxÞu@D dsðxÞ
� �

¼ Re �
Z

XRnD
r �wru@D dxþ j2

Z
XRnD

�wu@D dxþ ij
Z
@D

r�wu@D dsðxÞ þ
Z
@XR

Mðu@DÞ �wdsðxÞ
" #

: ð17Þ
Replacing v by w in (14), denoting
W :¼ rurwþ ð�j2 þ ijrðr:nÞÞu �wþ ij
@ðru �wÞ
@n

� �
ð18Þ
and using (17), we have the shape derivative of the least squares functional Fð@D;rÞ under the map VðxÞ as
F@Dð@D;rÞðVÞ ¼ �Re
Z
@D
ðV :nÞW dsðxÞ

� �
: ð19Þ
It shows again that the shape derivative of Fð@D;rÞ depends only on the boundary by normal projection of the velocity V and
W, which is determined by u, w, ru and rw.

Remark 2.3. We can also use the Lagrange multiplier method to compute shape derivatives like it was done in [2,11].
2.4. The partial derivative of Fð@D;rÞ w.r.t. the impedance function

Now we compute the derivative of the least squares Fð@D;rÞwith respect to r when D is fixed. We try to find the Frechet
derivative of u with respect to r in the direction of hðxÞ : R2 ! R. This is very similar to the procedure of obtaining the shape
derivative: with the Frechet derivative ur :¼ lim�!0

1
� ðuðrþ �hÞ � uðrÞÞ, we take the difference between the two variational

formulations, and let � go to 0 to get:
Z
XRnD
ð�rur � rv þ j2ur�vÞdxþ ij

Z
@D

rur�v dsðxÞ þ
Z
@XR

MðurÞ�v dsðxÞ þ ij
Z
@D

hu�v dsðxÞ ¼ 0: ð20Þ
Note that this equation is similar to the shape derivative equation (14) except that the term ij
R
@D hu�v dsðxÞ is replaced byR

@D V :nW dsðxÞ in (14). Therefore, with the same procedure including the same adjoint equation, we obtain the derivative
of Fð@D;rÞ with respect to r
Frð@D;rÞ ¼ �Re ij
Z
@D

hu �wdsðxÞ
� �

:

If we assume that r is a real function, then we have
Frð@D;rÞðhÞ ¼
Z
@D

hImðju �wÞdsðxÞ: ð21Þ
Therefore, the derivative of Fð@D;rÞ with respect to rðxÞ can be solely determined from u and w.

3. The solution of the scattering problem

In this work we resort to boundary integral methods to solve the Helmholtz problem (10) and the adjoint problem (16)
due to the efficiency and rapid convergence of the method. Since the incident wave ui is explicitly known it is enough to solve
the scattered wave us from the following scattering problem:
Dus þ j2us ¼ 0; in X n D;
@us

@m þ ijrus ¼ f on @D;
@us

@m ¼ M½us� on @XR;

8><
>: ð22Þ
where f ¼ �ijeijd�xðd � nþ rÞ in (10) and f ¼ cðxÞ in (16). Assuming that @D has an analytic expression, we can solve the scat-
tering problem (22) based on potential method elaborated in the following proposition.

Proposition 3.1. Let wðxÞ 2 C0;að@DÞ be the unique solution of the following integral equation:
ðI � ðK 0 þ ijrSÞÞwðxÞ ¼ �2f ðxÞ; ð23Þ
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then
1. the solution to the scattering problem (22) usðxÞ 2 C1;aðX n DÞ is given by
usðxÞ ¼ 1
2
ðSwÞðxÞ ¼

Z
@D

Uðx; yÞwðyÞdsðyÞ
and
2. the gradient of usðxÞ is in C0;aðX n DÞ with
rusðxÞ ¼
Z
@D
rxUðx; yÞwðyÞdsðyÞ � 1

2
wðxÞnðxÞ for x 2 @D:
Furthermore, the far-field pattern can be written as
3: u1ðx̂Þ ¼ 1

2 S1ðwÞðx̂Þ ¼
R
@D U1ðx̂; yÞwðyÞdsðyÞ for x 2 @D.

The proof of the points 1 and 3 of Proposition 3.1 can be given as in Section 3.2 of [7] while the point 2 is justified by
Theorem 2.17 of [6], assuming that j2 is not a Dirichlet–Laplacian eigenvalue in D.

4. The reconstruction of the shape by implementing the level set method

The level set method [24], a well-known implicit boundary representation method, is applied to reconstruct the boundary
of the obstacle by representing the interface @D as the zero level set of a time dependent signed distance function /ðx; tÞ
/ðx; tÞ
< 0 x 2 D

> 0 x 2 R2 n D:

�

The motion of the interface is matched with the evolution of the zero level set, and the resulting partial differential equation
for the evolution of the level set function resembles a Hamilton–Jacobi equation. To do so, we take the derivative of
/ðxðtÞ; tÞ ¼ 0 for xðtÞ 2 @D with respect to t and we obtain
/t þ x0ðtÞ � r/ ¼ 0:
To minimize the energy functional Fð@D;rÞ for a fixed impedance function rðxÞ, we choose a descent direction
x0ðtÞ :¼ V ¼Wn ¼W r/

jr/j, then the above equation becomes
/t þWjr/j ¼ 0: ð24Þ
Therefore, to update the level set function /ðx; tÞ, we need to compute the velocity W from (18) by obtaining the solutions
of the Helmoltz problem (10) and the adjoint problem (16) from Proposition 3.1. To calculate the boundary integrals, we
need to find a parametrization form of the zero level set for a given level set function. The details of this parametrization
will be given in Section 4.2, but here we mention that we are aware of the limitation of our algorithm as trying to combine
these two methods. The drawback is that the boundary has to be a starlike shape and the change of topology of our level
set function is not allowed. From this sense, the use of level set methods is not necessary. For example, we can represent
the boundary explicitly by some basis functions(trigonometric series, polynomials, etc.), and use the velocity W to update
the boundary along the normal direction with an appropriate step size, this is introduced as the Steepest Descent Approach
in [13]. This approach is rather inefficient in terms of computation time since for every time step size the resulting bound-
ary has to be tested for admissibility and the both problems (Helmholtz and adjoint) have to be solved for the test of
admissibility. For more details, we refer to [13]. Nevertheless, we justify the use of level set methods for the following
three reasons:

� The level set method is more efficient since the choice of time step size for the Hamilton–Jacobi equation (24) is governed
by the CFL condition.

� The computation time of updating the level set equation (24) or obtaining an explicit curve from a given level set function
is relatively small compared with solving the linear equation (23) to obtain the density function wðxÞ. Therefore, we can
afford to use a fine grid level set function for the accuracy of the boundary integral method. The details will be discussed
more in the numerical results section.

� In a future work, we plan to compute the solutions of the Helmholtz problem (10) and the adjoint problem (16) by
solving the variational problem (11) through finite element methods. To solve (11), we propose to approximate the sec-
ond term in (11), a boundary integral on @D, by the use of delta function of the level set function /ðx; tÞ to avoid the
necessity of an explicit boundary representation. In such a way topology changes can occur naturally to the level set
method, such as two objects merging into one or one object splitting to two. Therefore, it can be applied to multi scat-
tering problems.

Finally, before we present our algorithm of reconstructing the shape by combining the level set method and the boundary
integral method, we note that W is only defined on the boundary of the obstacle @D. Therefore, to update the level set func-
tion /ðxÞ defined on the whole domain, we need to extend W to the whole domain. This will be elaborated in Section 4.3.
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4.1. Our algorithm to reconstruct the shape when the impedance function is known

1. The 0th iteration: given an initial level set function /0ðxÞ, with parametrization, we obtain the boundary of the obstacle
represented by @D0 ¼ fx : x 2 R2;/0ðxÞ ¼ 0g. From Proposition 3.1 we obtain u1ð@D0;rÞðxÞ to compute the energy func-
tional Fð@D0;rÞ.

2. The nth iteration (n > 0): based on Proposition 3.1 and with the given @Dn�1 we obtain the solutions of the Helmholtz
problem (10) and the adjoint problem (16) u and �w, as well as ru and r �w.

3. Through (18) we obtain a velocity W defined only on @Dn�1. We extend the velocity W by a linear transport equation
described by (25) in Section 4.3 and plug it in (24), then we obtain an updated level set function /nðxÞ.

4. We re-initialize (cf. [26]) the level set function /nðxÞ every five iterations.
5. With the newly updated level set function /nðxÞ, we perform parametrization to obtain the boundary of the obstacle @Dn.

We calculate u1ð@Dn;rÞðxÞ and then the energy functional Fð@Dn;rÞ. We compare this new energy with the previous one
Fð@Dn�1;rÞ. If a stopping criterion is satisfied, we stop here.

6. Otherwise we move on to the ðnþ 1Þth iteration by going back to the second step.
4.2. Parametrization

To find a parametrization of the zero level set from a level set function /nðxÞ, as we mentioned in the introduction we
assume that a point z ¼ ðx1; x2Þ inside the exact obstacle is known. Therefore, starting from an initial level set function
/0ðxÞ with /0ðzÞ < 0, we will have /nðzÞ < 0 8n > 0. This is because if at the nth iteration /nðzÞ > 0, then the reconstructed
object is empty. But as we know, the least squares functional Fð;;rÞ at the nth iteration is larger than the 0th iteration
Fð@D0;rÞ, which contradicts our minimizing algorithm. We approximate the zero level set by M uniformly distributed points.
Naturally we start from ðx1; x2Þ, go along each radial line with an angle h ¼ 0;2p=M; . . . ;2pðM � 1Þ=M and check the sign of
the level set function for each grid lying on the radial line. Once the sign of the level set function for some grid becomes po-
sitive, then we can obtain a boundary point ðx1ðhÞ; x2ðhÞÞ by a simple linear interpolation.

After we have M uniformly distributed points on the boundary of the obstacle, we use the Fourier series theory to find an
analytical expression of the boundary of the obstacle @Dn. The analytical expression of @Dn is needed in the computation of
scattering operators.

4.3. Velocity extension

At the nth iteration, with the given computed velocity W, we first obtain a preliminary extension Vn
0 of W by extending W

radial symmetrically from a point inside the obstacle. Here we choose z ¼ ðx1; x2Þ, the base point for the parametrization.
Now with Vn

0 and the level set function /nðxÞ we perform several (around 10) iterations of the following linear transport
equation [4]
@w
@t
þ signðVn

0Þðrw � r/nÞ ¼ 0 ð25Þ
to smooth the preliminary extension along the level sets of /nðxÞ. We start from wðt ¼ 0Þ ¼ Vn
0.

5. The reconstruction of the impedance function

Based on (21), the r derivative of Fð@D;rÞ for fixed shapes, it is natural to update the impedance function rðxÞ by the
method of steepest descent. From now on, we define rðxÞ only on the boundary of obstacle @D, in terms of h which is the
angle of the point x to the center z from above. Particularly h ¼ 0;2p=M; . . . ;2p � ðM � 1Þ=M in our numerical experiments.
In such a way, when the shape @Dn�1 is updated to a new shape @Dn, rn�1ðxÞ is projected onto the new boundary @Dn by the
use of angular coordinates. This new projected impedance function on @Dn, denoted as rn;0ðxÞ, serves as the old rn�1ðxÞ to be
updated in the minimization of rðxÞ. See step 6 of our algorithm in the next section.

In addition, to prevent the reconstructed impedance function from being noisy, we add a regularization term

k
2

Z
@D
jrrðxÞj2dsðxÞ
to the least squares functional Fð@D;rÞ. The function of this regularization term is in favor of a smooth impedance function. A
large k tends to make a flat impedance function r, i.e. rðxÞ � const. Thus if we have a priori information of the impedance
function we can choose a proper regularization parameter k.

Therefore, we end up updating rðxÞ by the following equation:
rt ¼ kDr� jImðu �wÞ: ð26Þ
Remark 5.1. In our algorithm, we do not use a regularization for the shape function. However, this can easily be included by
adding a e.g. curvature term in the level set iteration. Note that even without regularization the level set iteration can be
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viewed as an iterative regularization [5], if a stopping criteria is used. Also, the reinitialization procedure helps stabilizing the
shapes during the iterations. In our numerical examples, we observed that an explicit regularization term was not necessary.
6. Our algorithm to reconstruct the shape and the impedance function

When both of the shape and the surface impedance function are unknown, we follow the algorithm described in Section
4.1 with an additional procedure to update rðxÞ, which is described below:

1. The 0th iteration: given an initial level set function /0ðxÞ and an initial impedance function r0ðxÞ, with parametrization
we first obtain the boundary of the obstacle @D0 and then we compute the energy functional Fð@D0;r0Þ.

2. The nth iteration (n > 0): we set two indexes for / and r: I/ ¼ 1 and Ir ¼ 1. With the given @Dn�1 and rn�1ðxÞ, we obtain u,
ru, �w and r �w from Proposition 3.1.
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Fig. 1. First row: star shape, rðxÞ ¼ 1; second row: star shape, rðxÞ ¼ 2þsin h cos h
ð3þsin hÞ2

; third row: leaf shape, rðxÞ ¼ 1; fourth row: leaf shape, rðxÞ ¼ 2þsin h cos h
ð3þsin hÞ2

. First
column: initial guess of r ¼ 1:2; second column: r ¼ 2:2; Third column: r ¼ 3:0.
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3. By simple calculation we obtain a velocity W defined only on @Dn�1 from (18). Extending the velocity W to the whole
domain and plug it in (24), we obtain a updated level set function /nðxÞ.

4. We re-initialize (cf. [26]) the level set function /nðxÞ every five iterations.
5. With the newly updated level set function /nðxÞ, we perform parametrization to obtain the boundary of the obstacle @Dn.

We compute the energy functional Fð@Dn;rn�1Þ. We compare this new energy with the previous one Fð@Dn�1;rn�1Þ. If a
stopping criterion is satisfied, we denote the index for the level set function I/ ¼ 0.

6. The kth inner iteration (k > 0 and k 6 m) for updating rðxÞ: with the new @Dn and rn;0ðxÞ (the latter is projected onto the
new boundary @Dn by the old impedance function rn�1ðxÞ), we solve the equivalent Helmholtz problem (10) and the
adjoint problem (16) to obtain u and �w. We calculate the velocity �Imðju �wÞ to obtain rn;kðxÞ from (26).

7. With the fixed @Dn and the newly updated rn;kðxÞ, we compute the energy functional Fð@Dn;rn;kÞ. We compare this new
energy with the previous one Fð@Dn;rn;k�1Þ. If k < m and a stopping criterion is not satisfied, we go back to the sixth step
to perform ðkþ 1Þth inner iteration for rðxÞ. Otherwise, we denote the index for updating the impedance function Ir ¼ 0.
If both indexes are zero, we stop here. Otherwise,

8. We move on to the ðnþ 1Þth outer iteration by going back to the second step.

Due to the stopping criterion, the number of iterations to update /ðxÞ and rðxÞ is not uniformly distributed like what we
want: every iteration of updating /ðxÞ for m iterations of updating rðxÞ. Therefore, we try to choose m to uniformly distribute
the number of iterations to update the shape with a fixed impedance function and the number of iterations to update the
impedance function with a fixed shape. For example, we perform two inner iterations of rðxÞ per iteration of /ðxÞ for all three
reconstructions in Fig. 2, one iteration of rðxÞ per 10 iterations of /ðxÞ for the first two reconstructions in Fig. 3 and one iter-
ation of rðxÞ per iteration of /ðxÞ for the third reconstruction in Fig. 3. Nevertheless in Fig. 4 we show that our reconstruc-
tions are relatively stable with respect to the choice of this number of inner iterations for updating rðxÞ per iteration of /ðxÞ
or vice versa.

7. Numerical results

We consider the problem of identifying the shape and the impedance function of an impenetrable obstacle from the
knowledge of its far-field scattering pattern obtained in response to four plane waves incident at angles 0, p

2, p and 3p
2 and

at a fixed frequency with the wave number j ¼ 0:6. The far-field pattern information is given at 64 uniformly distributed
angles 0;2p=64; . . . ;2p � 63=64. So is the parametrization with the base point z, which is chosen as ð�0:25;0:2Þ for a star
shape with polar coordinates ðr; hÞ where r2 þ 1:2rsinð3hÞ ¼ 2:42 (cf. [3]) and ð0;0Þ for a shape of five leaves with
r ¼ 2ð1þ 0:2 cosð5hÞÞ (cf. [14]). Our numerical results are not sensitive to the choice of this point as long as it is inside
the obstacle and not too close to the boundary of the obstacle. The impedance function rðxÞ (cf. [20]) is either a constant
rðxÞ ¼ 1 or a smooth function rðxÞ ¼ 2þsinh cos h

ð3þsinhÞ2
, where h is the angle of the point x 2 @D. The computing domain is

½�5;5� 	 ½�5;5� and the grid size for the level set method is dx ¼ dy ¼ 10=64. So the average number of grids per wave length
is about 60, which is high compared with 30 from [11]. However, the computation time Oð642Þ for updating the level set
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Fig. 2. First row: reconstructions of the shape; second row: reconstructions of the impedance function; first column: the regularization parameter k ¼ 1;
Second column: k ¼ 10; third column: k ¼ 100.
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Fig. 3. First row: reconstructions of the shape; second row: reconstructions of the impedance function; first column: the regularization parameter k ¼ 1;
second column: k ¼ 0:5; third column: k ¼ 0.

−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

a b c

d e f

Fig. 4. First row: reconstructions of the shape; second row: reconstructions of the impedance function; first column: two iterations of rðxÞ per iteration of
/ðxÞ; second column: one iteration of rðxÞ per two iterations of /ðxÞ; third column: one iterations of rðxÞ per four iterations of /ðxÞ. The initial guess for the
impedance function is rðxÞ ¼ 1:2.
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function is relatively small compared with the computation time Oð643Þ for solving the linear equation (23) by the Gauss–
Seidel method.

All of our numerical results shown here, the red solid line denotes the exact shape or the exact impedance function, the
green dash dot line denotes the initial shape or the initial impedance function, and the blue dashed line denotes the recon-
structed shape or the reconstructed impedance function.

7.1. Reconstruction of @D When rðxÞ is Known

First let us consider a simpler problem. We assume the impedance function rðxÞ is given and we want to reconstruct the
boundary of the obstacle from the given far-field pattern according to the algorithm in Section 4.1.

In Fig. 1 we show our algorithm is stable with respect to the initial guess of the shape. The reconstruction is done on both
obstacles, both impedance functions and three different starting shapes: a circle of radius r ¼ 1:2, r ¼ 2:2 and r ¼ 3:0. The
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reconstructed results are very good. Particularly for the star shape obstacle, the reconstructions are almost perfect. More-
over, in our numerical experiments we have also noticed that in the case of the star shape with rðxÞ ¼ 1 the range of the
initial guess to obtain a good reconstruction is relatively larger compared with the other three cases. The range is from
rmin ¼ 0:4 to rmax ¼ 4:1. But for the leaf shape obstacle, our reconstructed results do not catch all the corners accurately,
see Fig. 1(j). One of the reasons is the non-convexity of the leaf shape. In general, the more non-convex of a shape is the hard-
er is to reconstruct the shape, therefore it is harder to reconstruct the leaf shape than the star shape. Moreover, comparing (g)
and (j) in Fig. 1, we may conclude that a non-constant surface impedance makes an obstacle more invisible.

7.2. Reconstructions of @D and rðxÞ

In Fig. 2 we reconstruct both the star shape and the impedance function rðxÞ ¼ 1 by using different regularization param-
eters: k ¼ 1 shown in the first column, k ¼ 10 shown in the second column and k ¼ 100 shown in the third column. The ini-
tial guesses for the shape and the impedance function are all chosen as r ¼ 2:5 and rðxÞ ¼ 1:2. We observe that the
reconstructed shapes for three cases are very good with k ¼ 100 giving the best reconstruction results, see the third column
in Fig. 2.

However, when the surface impedance function is varying instead of constant, it is better to use a smaller regularization
parameter. This is tested on the case of the leaf shape and rðxÞ ¼ 2þsin h cos h

ð3þsin hÞ2
with the initial guesses r ¼ 2:5 and rðxÞ ¼ 0:4. In

Fig. 3, we show the results obtained from k ¼ 1, k ¼ 0:5 and k ¼ 0 in the first column, the second column and the third col-
umn respectively. Again we observe that the reconstructed shapes and impedance functions are very good. In particular, in
the case of k ¼ 0, we are surprised that we are able to reconstruct a shape which matches the exact shape perfectly but with
an oscillating impedance function which at least catches the location of the min/max value of the exact impedance function.

As we mentioned, Fig. 4 shows that the reconstructions are not sensitive to the choice of the number of iterations of rðxÞ
per iteration of /ðxÞ or vice versa. This is tested on the case of the leaf shape and rðxÞ ¼ 2þsin h cos h

ð3þsinhÞ2
again with the initial guesses

r ¼ 2:5 and rðxÞ ¼ 1:2 (not shown in Fig. 4 in order to have a closer look of the reconstructed impedance function and the
exact impedance function). The regularization parameter k ¼ 0:5 for all three cases. Even though the initial impedance func-
tion is far away from the exact function the reconstruction results for both the shape and the impedance function are quite
good. It indicates that our algorithm is stable with respect to the initial guess for the impedance function as well. We also
tested on the same case with an initial impedance function rðxÞ ¼ 0:05, the reconstructed rðxÞ (not shown here) can still find
the peak of the exact rðxÞ but not the valley of the exact rðxÞ. We are not clear what causes this.

We have also done some experiments to test against ‘‘inverse crime” on the case reconstructing both the star shape and
the constant impedance function starting from different initial conditions. That is, we first sample on a high number of far-
field data by using 128 basis functions. Then with this data we do a linear interpolation to obtain our given far-field data for
64 basis functions. We do obtain similar results compared with an exact data generated from 64 basis functions. Due to space
limitations the comparison images are not shown here.
−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

−5 0 5
−5

0

5

0 50
0.1

0.2

0.3

0.4

0.5

0.6

a b c

d e f

Fig. 5. First row: reconstructions of the shape; second row: reconstructions of the impedance function; first column: noise percentage d ¼ 5%, one iteration
of rðxÞ per ten iterations of /ðxÞ; second column: d ¼ 10%, one iteration of rðxÞ per two iterations of /ðxÞ; third column: d ¼ 20%, one iteration of rðxÞ per
two iterations of /ðxÞ.
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Fig. 6. First row: reconstructions of the shape; second row: reconstructions of the impedance function; first column: noise percentage d ¼ 5%, one iteration
of rðxÞ per iteration of /ðxÞ; second column: d ¼ 10%, one iteration of rðxÞ per iteration of /ðxÞ; third column: d ¼ 20%, one iteration of rðxÞ per iteration of
/ðxÞ.
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7.3. Reconstructions of @D and rðxÞ for noisy data

In this section we reconstruct both the shape and the impedance function of an obstacle from noisy far-field pattern data
gdð@D;rÞ with the noise percentage d defined as
d :¼ kg
d � g0kL2

kg0kL2
;

where g0 is the noise free far-field data obtained from the exact shape D and the exact impedance function rðxÞ.
In Fig. 5 we show the reconstructed results on the star shape obstacle and the varying impedance function from noisy

data where d ¼ 5% in the first column, d ¼ 10% in the second column and d ¼ 20% in the third column. All the reconstruc-
tions start from the initial guesses r ¼ 2:5 and rðxÞ ¼ 0:4. The regularization parameter k is chosen as 0.5 for all three cases.
The results are still good and for the reconstructions from 5% noisy data, the blue dashed line matches the red solid line per-
fectly for the shape and only a little bit off for the impedance function. Over all the numerical experiments we have observed
that the reconstruction for the shape is usually better and more stable than for the impedance function. The third column
shows we can still obtain a good shape and a reasonable impedance function even for 20% noise. However, we have to admit
that in the noisy cases the initial guess for the shape was very close to the true one. On the other hand, such initial guesses
can also be computed rather efficient with sampling/probing type algorithms. So a combination of gradient type methods
and sampling type algorithms to obtain initial guesses seems to be quite promising.

Fig. 6 shows the reconstructions on the leaf shape obstacle and the constant impedance function with given noisy data.
The noise percentages for the first column, the second column and the third column correspondingly are 5, 10 and 20. All
three reconstructions start from the initial guesses r ¼ 1:0 and rðxÞ ¼ 1:2. The regularization parameter k is chosen as 10
this time for all three cases. Here we observe a larger impact of the noise percentage on the reconstructed results, for both
the shape and the impedance function.
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